Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 48(6): 1728-1736, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36662405

RESUMO

Pyruvate carboxylase (PC) is an enzyme catalyzing the carboxylation of pyruvate to oxaloacetate. The enzymatic generation of oxaloacetate, an intermediate of the Krebs cycle, could provide the cancer cells with the additional anaplerotic capacity and promote their anabolic metabolism. Recent studies revealed that several types of cancer cells express PC. The gained anaplerotic capability of cells mediated by PC correlates with their expedited growth, higher aggressiveness, and increased metastatic potential. By immunohistochemical staining and immunoblotting analysis, we investigated PC expression among samples of different types of human brain tumors. Our results show that PC is expressed by the cells in glioblastoma, astrocytoma, oligodendroglioma, and meningioma tumors. The presence of PC in these tumors suppose that PC could support the anabolic metabolism of their cellular constituents by its anaplerotic capability.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Neoplasias Meníngeas , Meningioma , Oligodendroglioma , Humanos , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo , Ácido Oxaloacético , Oxaloacetatos
2.
Cancers (Basel) ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35158853

RESUMO

Leucine is an essential, ketogenic amino acid with proteinogenic, metabolic, and signaling roles. It is readily imported from the bloodstream into the brain parenchyma. Therefore, it could serve as a putative substrate that is complementing glucose for sustaining the metabolic needs of brain tumor cells. Here, we investigated the ability of cultured human cancer cells to metabolize leucine. Indeed, cancer cells dispose of leucine from their environment and enrich their media with the metabolite 2-oxoisocaproate. The enrichment of the culture media with a high level of leucine stimulated the production of 3-hydroxybutyrate. When 13C6-leucine was offered, it led to an increased appearance of the heavier citrate isotope with a molar mass greater by two units in the culture media. The expression of 3-methylcrotonyl-CoA carboxylase (MCC), an enzyme characteristic for the irreversible part of the leucine catabolic pathway, was detected in cultured cancer cells and human tumor samples by immunoprobing methods. Our results demonstrate that these cancer cells can catabolize leucine and furnish its carbon atoms into the tricarboxylic acid (TCA) cycle. Furthermore, the release of 3-hydroxybutyrate and citrate by cancer cells suggests their capability to exchange these metabolites with their milieu and the capability to participate in their metabolism. This indicates that leucine could be an additional substrate for cancer cell metabolism in the brain parenchyma. In this way, leucine could potentially contribute to the synthesis of metabolites such as lipids, which require the withdrawal of citrate from the TCA cycle.

3.
Gen Physiol Biophys ; 40(2): 127-135, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33880999

RESUMO

Pyruvate carboxylase (PC) is an enzyme catalyzing the conversion of pyruvate to oxaloacetate, which possesses anaplerotic role in cellular metabolism. The expression of PC was confirmed in cells of several cancer types, in which it ensures several cellular functions, such as growth and division. To investigate the expression of PC in human astrocytoma, glioblastoma and neuroblastoma cells we applied the immunodetection methods. The results of the Western blot analysis and immunocytochemical detection revealed the presence of PC in human astrocytoma, glioblastoma and neuroblastoma cells. Furthermore, application of PC inhibitor, 3-chloro-1,2-dihydroxypropane (CDP), negatively impacts the viability of astrocytoma cells. The cytotoxic effect of CDP could be partially reversed by application of citrate, 2-oxoglutarate and malate in incubation media. Our results revealed that astrocytoma, glioblastoma and neuroblastoma cells are equipped with PC, which might significantly contribute by its anaplerotic activity to sustain the metabolism of cancer cells.


Assuntos
Astrocitoma , Glioblastoma , Neuroblastoma , Humanos , Piruvato Carboxilase , Ácido Pirúvico
4.
Cells ; 10(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418977

RESUMO

Circulating extracellular DNA (ecDNA) is known to worsen the outcome of many diseases. ecDNA released from neutrophils during infection or inflammation is present in the form of neutrophil extracellular traps (NETs). It has been shown that higher ecDNA concentration occurs in a number of inflammatory diseases including inflammatory bowel disease (IBD). Enzymes such as peptidyl arginine deiminases (PADs) are crucial for NET formation. We sought to describe the dynamics of ecDNA concentrations and fragmentation, along with NETosis during a mouse model of chemically induced colitis. Plasma ecDNA concentration was highest on day seven of dextran sulfate sodium (DSS) intake and the increase was time-dependent. This increase correlated with the percentage of cells undergoing NETosis and other markers of disease activity. Relative proportion of nuclear ecDNA increased towards more severe colitis; however, absolute amount decreased. In colon explant medium, the highest concentration of ecDNA was on day three of DSS consumption. Early administration of PAD4 inhibitors did not alleviate disease activity, but lowered the ecDNA concentration. These results uncover the biological characteristics of ecDNA in IBD and support the role of ecDNA in intestinal inflammation. The therapeutic intervention aimed at NETs and/or nuclear ecDNA has yet to be fully investigated.


Assuntos
Colite/induzido quimicamente , DNA/metabolismo , Espaço Extracelular/metabolismo , Inflamação/patologia , Intestinos/patologia , Animais , Biomarcadores/metabolismo , Colite/sangue , Colite/patologia , DNA/sangue , DNA Mitocondrial/sangue , Desoxirribonucleases/metabolismo , Sulfato de Dextrana , Endoscopia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Inflamação/sangue , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ornitina/análogos & derivados , Ornitina/farmacologia , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Índice de Gravidade de Doença , Estreptonigrina/farmacologia
5.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212934

RESUMO

The primary pathogenesis associated with Parkinson's disease (PD) occurs in peripheral tissues several years before the onset of typical motor symptoms. Early and reliable diagnosis of PD could provide new treatment options for PD patients and improve their quality of life. At present, however, diagnosis relies mainly on clinical symptoms, and definitive diagnosis is still based on postmortem pathological confirmation of dopaminergic neuronal degeneration. In addition, the similarity of the clinical, cognitive, and neuropathological features of PD with other neurodegenerative diseases calls for new biomarkers, suitable for differential diagnosis. Alpha-synuclein (α-Syn) is a potential PD biomarker, due to its close connection with the pathogenesis of the disease. Here we summarize the currently available information on the possible use of α-Syn as a biomarker of early stages of PD in gastrointestinal (GI) tissues, highlight its potential to distinguish PD and other neurodegenerative diseases, and suggest alternative methods (primarily developed for other tissue analysis) that could improve α-Syn detection procedures or diagnostic methods in general.


Assuntos
Trato Gastrointestinal/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismo , Diagnóstico Diferencial , Diagnóstico Precoce , Humanos
6.
Front Neurosci ; 14: 626, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625058

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic neurons, and at the cellular level by the formation of Lewy bodies in the central nervous system (CNS). However, the onset of the disease is believed to be localized to peripheral organs, particularly the gastrointestinal tract (GIT) and the olfactory bulb sooner before neuropathological changes occur in the CNS. Patients already in the pre-motor stage of PD suffer from various digestive problems and/or due to significant changes in the composition of the intestinal microbiome in this early stage of the disease. Detailed analyses of patient biopsies and autopsies as well as animal models of neuropathological changes characteristic of PD provided important information on the pathology or treatment of PD symptoms. However, presently is not clarified (i) the specific tissue in the GIT where the pathological processes associated with PD is initiated; (ii) the mechanism by which these processes are disseminated to the CNS or other tissues within the GIT; and (iii) which neuropathological changes could also serve as a reliable diagnostic marker of the premotor stages of PD, or (iv) which type of GIT tissue would be the most appropriate choice for routine examination of patient biopsies.

7.
Oxid Med Cell Longev ; 2017: 8210734, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751933

RESUMO

Traditionally, oxidative stress as a biological aspect is defined as an imbalance between the free radical generation and antioxidant capacity of living systems. The intracellular imbalance of ions, disturbance in membrane dynamics, hypoxic conditions, and dysregulation of gene expression are all molecular pathogenic mechanisms closely associated with oxidative stress and underpin systemic changes in the body. These also include aspects such as chronic immune system activation, the impairment of cellular structure renewal, and alterations in the character of the endocrine secretion of diverse tissues. All of these mentioned features are crucial for the correct function of the various tissue types in the body. In the present review, we summarize current knowledge about the common roots of metabolic and neurodegenerative disorders induced by oxidative stress. We discuss these common roots with regard to the way that (1) the respective metal ions are involved in the maintenance of oxidative balance and (2) the metabolic and signaling disturbances of the most important biometals, such as Mg2+, Zn2+, Se2+, Fe2+, or Cu2+, can be considered as the central connection point between the pathogenesis of both types of disorders and oxidative stress.


Assuntos
Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Animais , Humanos , Doenças Neurodegenerativas/patologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...